

Cl⁻ Channels in Basolateral Renal Medullary Membrane Vesicles: IV. Analogous Channel Activation by Cl⁻ or cAMP-Dependent Protein Kinase

Christopher J. Winters, W. Brian Reeves, and Thomas E. Andreoli

Division of Nephrology, Department of Internal Medicine, University of Arkansas 72205, College of Medicine, Little Rock, Arkansas 72205, and John L. McClellan Veterans Administration Hospital, Little Rock, Arkansas 72205

Summary. We examined the interactions of cAMP-dependent protein kinase and varying aqueous Cl⁻ concentrations in modulating the activity of Cl⁻ channels obtained by fusing basolaterally enriched renal outer medullary vesicles into planar lipid bilayers. Under the present experimental conditions, the *cis* and *trans* solutions face the extracellular and intracellular aspects of these Cl⁻ channels, respectively. Raising the *trans* Cl⁻ concentration from 2 to 50 mM increased the channel open-time probability, raised the unit channel conductance, and affected the voltage-independent determinant (ΔG) of channel activity but not the gating charge (Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990. *J. Membrane Biol.* **118**:269–278). With 2 mM *trans* KCl, *trans* addition of the catalytic subunit of PKA (C-PKA) plus ATP increased channel open-time probability and altered the voltage-independent determinant of channel activity without affecting either unit channel conductance or gating charge. The effect was ATP specific, did not occur with (C-PKA plus ATP) addition to *cis* solutions, and was abolished by denaturing C-PKA. Finally, (C-PKA plus ATP) activation of channel activity was not detected with relatively high (50 mM) *trans* Cl⁻ concentrations. These data indicate that (C-PKA plus ATP) might modulate Cl⁻ channel activity by phosphorylation at or near the Cl⁻-sensitive site on the intracellular face of these channels.

Key Words Cl⁻ channels/bilayers · Cl⁻ channels/vesicles · thick ascending limb · channel conductance · cAMP-dependent protein kinase

Introduction

This paper describes the interactions of cAMP-dependent protein kinase (PKA) and varying aqueous Cl⁻ concentrations in modulating the activity of Cl⁻ channels fused from basolaterally enriched renal medullary vesicles into planar lipid bilayer membranes [1, 15, 23]. The general rationale for these experiments depends on the following considerations.

In certain secretory epithelia, cAMP-dependent PKA regulates the activity of apically situated Cl⁻ channels [5, 11, 12, 20, 21]. Secretory diarrheas me-

diated by cholera toxin and like agents are due in part to apical Cl⁻ channel activation in small intestine cells [5, 12]. Alternatively, in the trachea, a failure of PKA to activate apical Cl⁻ channel activity is one of the physiologic aberrancies in cystic fibrosis [11, 20].

In the mammalian medullary thick ascending limb of Henle (mTALH), antidiuretic hormone (ADH)-dependent increases in the rate of net salt absorption [6–8, 18] or furosemide-mediated reductions in the rate of net salt absorption [2–4, 10, 13] are accompanied by increases or decreases in transcellular electrical conductance (G_c , mS cm⁻²), respectively. It is clear that these changes in G_c are referable primarily to changes in basolateral Cl⁻ conductance (g_b^{Cl} , mS cm⁻²) [4, 13]. But there are at least two different explanations for such variations in g_b^{Cl} , especially those variations referable to ADH.

On the one hand, Schlatter and Greger [18] found that, in mouse mTALH segments, cAMP and ADH elicited a fall in the fractional resistance of basolateral membranes when cell Cl⁻ activity was kept constant by blocking apical Cl⁻ entry with furosemide. These workers thus proposed that, in mTALH segments, cAMP activated basolateral Cl⁻ channels in a manner analogous to the activation of apical Cl⁻ channels by PKA in small intestine and in trachea [5, 11, 20, 21]. Paulais and Teulon [14] found that cAMP increased the activity of patch-clamped basolateral Cl⁻ channels from cortical thick limbs of mouse kidney. However, since ADH does not augment strikingly NaCl absorption in the cTALH [7, 24], the relevance of these latter data to ADH-dependent g_b^{Cl} changes in the mTALH is unclear.

Alternatively, we [13] have found that pretreatment of mTALH segments with luminal furosemide

reduces dramatically ADH-dependent increases in G_c ; and that, in apical renal medullary vesicles, PKA activates directly K^+ channels [16]. We [9, 13] have proposed that, in mTALH segments, ADH might enhance the activity of apical K^+ channels and apical $\text{Na}^+/\text{K}^+/2\text{Cl}^-$ cotransport units; and that the attendant rise in intracellular Cl^- activity might be a major factor regulating the magnitude of g_b^{Cl} .

It is pertinent to note in this connection that Cl^- channels are fused from basolaterally enriched renal medullary vesicles into planar bilayers by adding vesicles to a *cis* chamber containing a salt solution relatively hypertonic to the *trans* solution. As indicated previously [15], our working assumption is that volume flow from *trans* to *cis* chambers produces osmotic lysis and fusion of vesicles in the *cis* chamber with the bilayer. The Cl^- channels orient such that the intracellular aspects of the channels face *trans* solutions [23]; and the open-time probability for channel opening (P_o) is exquisitely sensitive to *trans* Cl^- concentrations in the range 2–50 mM. This variation of P_o with *trans* Cl^- concentrations confers on these Cl^- channels a rather greater voltage dependence than would be expected from Goldman-Hodgkin-Katz (GHK) formalism [15, 23]. Likewise, in intact mTALH segments, the fall in g_b^{Cl} with basolateral membrane hyperpolarization is considerably more than expected from GHK formalism [4, 13].

Given these considerations, the present experiments were designed to evaluate the interactions of the catalytic subunit of PKA (C-PKA) with varying aqueous Cl^- concentrations in modulating the activity of Cl^- channels fused from basolaterally enriched renal medullary vesicles into planar bilayers. The key experimental observations were that *trans* (C-PKA plus ATP) increased P_o without affecting unit channel conductance (g_{Cl} , pS). This effect was ATP specific and did not occur with C-PKA addition to *cis* solutions. Moreover, while this ATP-specific C-PKA effect occurred at relatively low (2 mM) *trans* Cl^- concentrations, C-PKA activation of channel activity was not detected with relatively high (50 mM) *trans* Cl^- concentrations. Thus, these data imply that, in mTALH segments, the interplay of both intracellular Cl^- activity and PKA with intracellular sites on basolateral Cl^- channels may modulate g_b^{Cl} . A preliminary report of some of these findings has appeared elsewhere [22].

Materials and Methods

The procedure for preparing basolaterally enriched vesicles from rabbit renal outer medulla, and the enzymatic characteristics of these vesicles, have been described previously [1]. For the pres-

ent studies, these vesicles were suspended in 250 mM sucrose and 30 mM histidine (pH 7.4) at a protein concentration of 10–20 mg/ml. The vesicles were used immediately or stored at –70°C for up to a week without noticeable changes in the characteristics of the Cl^- channels.

The catalytic subunit of cAMP-dependent protein kinase (C-PKA) was prepared from fresh beef heart using the procedure of Reimann and Beham [17]. The activity of the protein kinase was determined by phosphorylation of histone protein as described by Schleider and Reiman [19]. A unit of activity was defined as the incorporation of 1 pm of phosphate into histone per minute at 30°C [19].

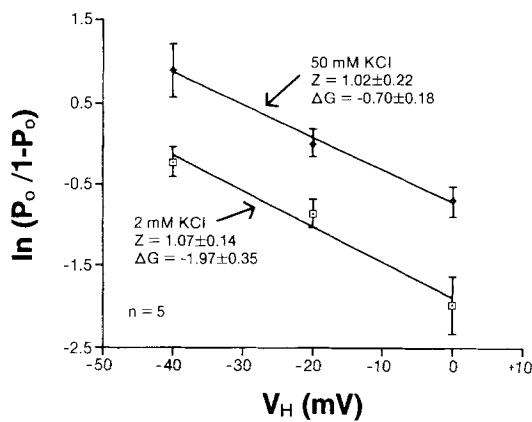
The bilayer apparatus, electronics, and the methods for bilayer formation, vesicle incorporation and data processing were identical to those described previously [15, 23]. In the present experiments, lipid bilayers were painted from a 1:1 mixture of phosphatidyl ethanolamine and phosphatidyl serine in decane (20 mg/ml). The *cis* solutions contained 270 mM KCl while the *trans* solutions contained either 2 or 50 mM KCl. All solutions contained 1 mM CaCl_2 and were buffered with 5 mM HEPES, pH 7.4, and all experiments were performed at room temperature ($23 \pm 1.0^\circ\text{C}$). In experiments testing the effects of C-PKA, 830 units of C-PKA (0.4 μM) were added to either the *cis* or *trans* chamber (volume ≈ 3 ml) along with 1 mM ATP or ADP.

The data in this paper are presented using the following conventions. The bilayer voltages are referenced to the *trans* chamber, which was grounded. Movement of chloride from the *cis* to *trans* chamber is indicated as a negative current which appears as a downward deflection in current traces. All results were expressed as mean values \pm SEM for the indicated number of experiments. A single bilayer was taken to be $n = 1$.

Results

EFFECT OF VARYING *trans* Cl^- CONCENTRATIONS

It is likely that Cl^- channels fused from these basolaterally enriched medullary vesicles into planar bilayers are oriented such that the intracellular aspects of these channels face *trans* solutions [15, 23]. For example, the *trans* but not *cis* faces of these channels are exquisitely sensitive to variations in ionic Ca^{2+} concentrations, in the range 10–50 nM [15].


Moreover, reducing *cis* Cl^- concentrations from 270 to 175 mM reduces by 50% the channel open-time probability. Alternatively, *trans* Cl^- concentration variations in the range 50–250 mM do not affect P_o [23], but at a single holding voltage (V_H , mV) of –20 mV, reducing *trans* Cl^- concentrations from 50 to 2 mM reduces P_o [23]. Since the present experiments included an evaluation of the interactions of C-PKA and these two *trans* Cl^- concentrations in modulating channel activity, it was pertinent to consider the effects of varying *trans* Cl^- concentrations on P_o and on single-channel conductance over a range of holding voltages.

The experimental data are presented in Table 1 and Fig. 1. The results presented in Table 1 show

Table 1. Effect of varying V_H and *trans* Cl^- concentrations on P_o

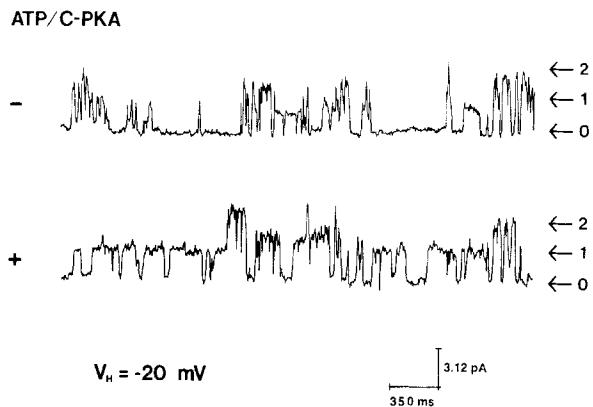
V_H (mV)	P_o		ΔP_o	
	50 mM <i>trans</i> Cl^-	2 mM <i>trans</i> Cl^-		
-40	0.70 \pm 0.06	0.45 \pm 0.05	0.25 \pm 0.08	($P < 0.05$)
-20	0.52 \pm 0.05	0.30 \pm 0.04	0.21 \pm 0.06	($P < 0.05$)
0	0.34 \pm 0.04	0.14 \pm 0.04	0.20 \pm 0.06	($P < 0.05$)
	$(n = 5)$			

The open-time probability (P_o) was measured in each bilayer at each of the indicated values of V_H and at the two indicated *trans* Cl^- concentrations. The *cis* Cl^- concentration was 270 mM. The results are expressed as mean values \pm SEM.

Fig. 1. A Boltzmann plot of the data presented in Table 1. The symbols are the mean values of $\ln(P_o/1 - P_o)$ at the indicated V_H values for the indicated number of bilayers, all from the data in Table 1. The lines are the mean regressions for the two different conditions. The indicated values of Z and ΔG were obtained from the slopes and the observed values of $\ln(P_o/1 - P_o)$ at zero V_H , respectively

clearly that, in paired observations, P_o at a given V_H was detectably smaller at 2 mM *trans* Cl^- than at 50 mM *trans* Cl^- . The unit channel conductances were greater with 50 mM *trans* Cl^- than with 2 mM *trans* Cl^- . From a GHK analysis of the current-voltage relations at the three V_H values indicated in Table 1, we obtained, using a P_{Cl}/P_K ratio of 10 [15], slope conductances at $V_h = -40$ mV of 83.3 ± 1.1 pS, with 50 mM *trans* Cl^- , and 67.8 ± 4.1 pS with 2 mM *trans* Cl^- ($n = 5$; $P < 0.05$).

In Fig. 1, the results from Table 1 are plotted according to a Boltzmann distribution, that is:


$$\ln(P_o/1 - P_o) = (ZF/RT) V_H + \Delta G$$

where Z is the gating charge and ΔG is the voltage-independent determinant of channel activity. The results shown in Fig. 1 indicate that, over the V_H

Table 2. Effects of (C-PKA plus ATP) on P_o with 2 mM *trans* Cl^-

V_H (mV)	P_o		ΔP_o	
	(C-PKA + ATP)	+	-	+
-40	0.47 \pm 0.03	0.65 \pm 0.04	0.17 \pm 0.05	($P < 0.04$)
-20	0.32 \pm 0.04	0.49 \pm 0.04	0.20 \pm 0.07	($P < 0.04$)
0	0.19 \pm 0.04	0.35 \pm 0.03	0.16 \pm 0.05	($P < 0.04$)
	$(n = 5)$			

Open-time probability was measured, in paired fashion, at each V_H with and without (C-PKA plus ATP) addition to *trans* solutions as described in Materials and Methods. The *cis* and *trans* solutions contained 270 mM Cl^- and 2 mM Cl^- , respectively. The data are expressed as mean values \pm SEM.

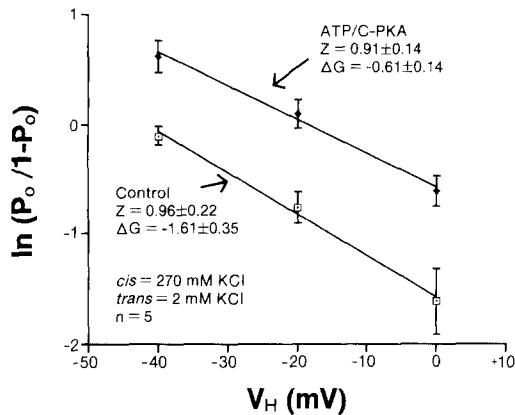


Fig. 2. Representative continuous tracing of a single lipid bilayer containing two Cl^- channels before and after the addition of (C-PKA plus ATP) to the *trans* solution. The *cis* and *trans* solutions contained 270 mM Cl^- and 2 mM Cl^- , respectively. The closed state is represented by 0, while 1 and 2 represent one- and two-channel openings in the bilayer

range tested, the data could be expressed according to the Boltzmann relation. In keeping with our earlier findings [23], reducing *trans* Cl^- concentrations affected the voltage-independent determinant of channel activity, but not the gating charge. The gating charge values shown in Fig. 1 are quite similar to those reported previously for similar experimental conditions [15, 23].

EFFECTS OF *trans* (C-PKA PLUS ATP) WITH 2 mM *trans* Cl^-

The relevant observations on the effects of adding (C-PKA plus ATP) to *trans* chambers containing 2 mM Cl^- are shown in Table 2 and Figs. 2–6. Figure 2 shows a continuous tracing from a representative bilayer containing two Cl^- channels. It is clear that, with a holding voltage of -20 mV, adding (C-PKA

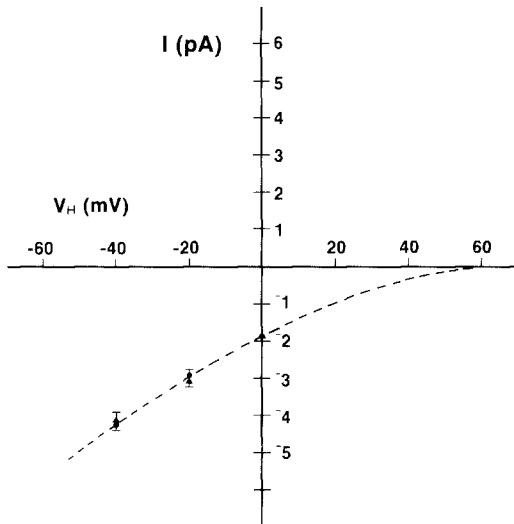


Fig. 3. A Boltzmann plot of the experimental data presented in Table 2. The data were plotted as indicated in Fig. 1

plus ATP) to the *trans* solution increased perceptibly the open-time probability for each channel. Clearly, from the tracing illustrated in Fig. 2, the dominant effect of *trans* (C-PKA plus ATP) addition was to increase mean open-time probability. Experiments currently in progress are intended to evaluate how this effect of (C-PKA plus ATP) on open-time probability modifies channel-gating kinetics. It should also be noted that, at this V_H , the magnitude of current fluctuations for each channel was unaffected (see Fig. 4).

Table 2 and Fig. 3 show the paired comparisons of *trans* addition of (C-PKA plus ATP) on P_o over a range of holding voltages and with 2 mM Cl^- uniformly present in *trans* solutions. A comparison of Tables 1 and 2 and Figs. 1 and 3 illustrates several noteworthy characteristics. First, without (C-PKA plus ATP), the control values of P_o , Z and ΔG at 2 mM *trans* Cl^- were quite similar in the two sets of experiments. When (C-PKA plus ATP) were added to *trans* solutions: the values of P_o , at each V_H , were quite similar to those observed when the *trans* Cl^- concentration was increased from 2 to 50 mM without (C-PKA plus ATP) addition (Tables 1 and 2). Moreover, ΔG fell to a value similar to that observed by raising *trans* Cl^- concentrations from 2 to 50 mM, while gating charge was unaffected (Figs. 1 and 3). In short, there was analogous activation of these Cl^- channels either by adding (C-PKA plus ATP) to *trans* solutions with 2 mM Cl^- , or by raising the *trans* Cl^- concentration from 2 to 50 mM.

Figure 4 compares the current-voltage relations for these Cl^- channels with 2 mM *trans* Cl^- and with or without *trans* addition of (C-PKA plus ATP). The data points are for the experiments presented in Table 2 and Fig. 3. The curvilinear relation is from GHK formalism using a P_{Cl}/P_K ratio of 10 which is,

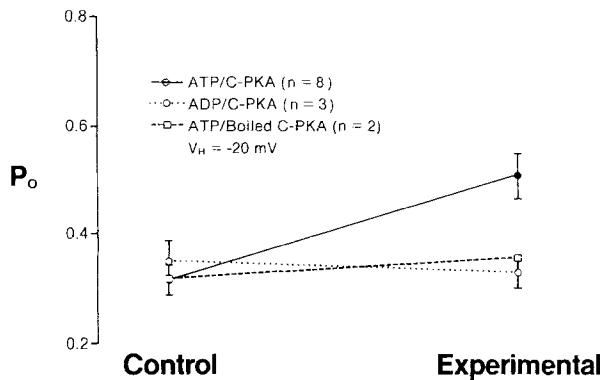


Fig. 4. Current-voltage data for the results presented in Table 2. The dashed line is the GHK relation for these experimental conditions using a P_{Cl}/P_K ratio of 10, as reported previously [15]

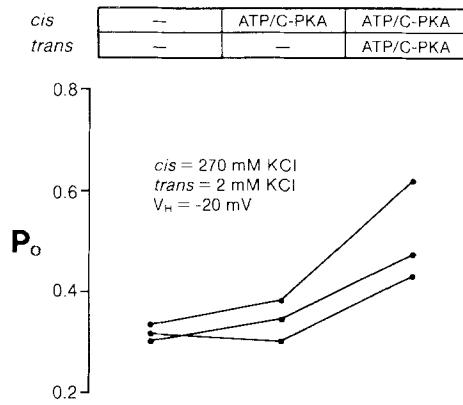

as noted previously [15], the Cl^-/K^+ permselectivity ratio for these Cl^- channels. The data shown in Fig. 4 indicate that adding (C-PKA plus ATP) to *trans* solutions had no detectable effect on the P_{Cl}/P_K ratio or on unit channel conductance. At $V_H = -40$ mV, the limiting slope conductances were: 66.1 ± 4.1 pS, without (C-PKA plus ATP); and 66.5 ± 4.2 pS, with (C-PKA plus ATP). These two values are statistically indistinguishable and virtually identical to the g_{Cl} values at $V_H = -40$ mV noted with 2 mM *trans* Cl^- in the experiments reported in Table 1. Thus we conclude that (C-PKA plus ATP) addition to *trans* solutions clearly increased P_o and altered ΔG (Table 2, Fig. 3), but did not alter g_{Cl} .

Figure 5 shows the results of experiments intended to assess aspects of the specificity of the augmenting effect on P_o obtained by adding (C-PKA plus ATP) to *trans* solutions containing 2 mM Cl^- . For convenience, control and experimental observations were carried out at a single holding voltage (-20 mV). The results presented in Fig. 5 show that, in eight different bilayers, adding (C-PKA plus ATP) to *trans* solutions increased P_o from 0.31 ± 0.03 to 0.50 ± 0.04 ($P < 0.01$). However, in paired observations in three bilayers, the combination (C-PKA plus ADP) had no detectable effect on P_o . Similarly, in two bilayers, the combination of (boiled C-PKA plus ATP) had no detectable effect on P_o . In other words, the effect of *trans* (C-PKA plus ATP) addition on P_o and ΔG at 2 mM *trans* Cl^- was ATP specific and required undenatured C-PKA.

Finally, Fig. 6 shows the results of paired experiments which evaluated the sidedness of (C-PKA plus

Fig. 5. The effect of *trans* addition of (C-PKA plus ATP), (C-PKA plus ADP), or (boiled C-PKA plus ATP) on P_o . All comparisons were paired at a holding voltage of -20 mV and a *trans* Cl^- concentration of 2 mM . The lines connect mean paired measurements under the same experimental conditions

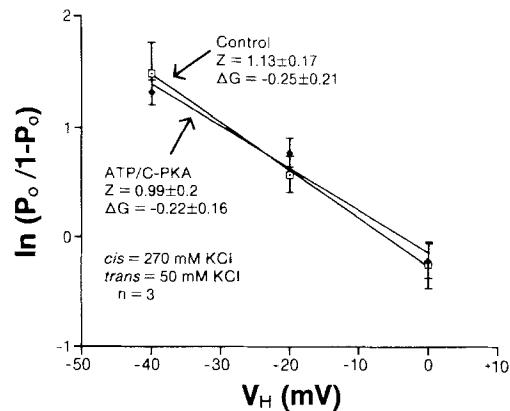


Fig. 6. Paired comparisons of the effects of adding (C-PKA plus ATP) to *cis* or *trans* solutions. The *cis* and *trans* solutions contained 270 mM Cl^- and 2 mM Cl^- , respectively; V_H was -20 mV . The lines connect paired measurements in individual bilayers

ATP) addition on P_o . The *cis* and *trans* solutions contained 270 mM Cl^- and 2 mM Cl^- , respectively; V_H was -20 mV . It is clear from the paired data shown in Fig. 6 that, for these conditions, (C-PKA plus ATP) increased P_o only when added to *trans* solutions.

EFFECTS OF *trans* (C-PKA PLUS ATP) ADDITION WITH 50 mM trans Cl^-

The relevant observations on *trans* (C-PKA plus ATP) addition with 50 mM trans Cl^- are presented in Fig. 7, which shows the results of paired measurements of the Boltzmann distribution of P_o with and without (C-PKA plus ATP) addition to *trans* solutions when the latter contained 50 mM Cl^- . Clearly,

Fig. 7. Paired measurements of the relations between P_o and V_H , expressed in terms of the Boltzmann equation, before and after the addition of (C-PKA plus ATP) to the *trans* chamber, with 50 mM trans Cl^- . The data are mean values for the indicated number of bilayers. The values of Z and ΔG for the paired conditions were computed as described in Fig. 1

in these paired observations, *trans* (C-PKA plus ATP) addition had no detectable effect on the determinants of channel activity. From the current-voltage relations for the data shown in Fig. 7, we obtained, using a $P_{\text{Cl}}/P_{\text{K}}$ ratio of 10 [15], slope conductances at -40 mV of $86.4 \pm 8.9\text{ pS}$, without (C-PKA plus ATP), and $87.2 \pm 6.2\text{ pS}$, with (C-PKA plus ATP).

Finally, in paired measurements in nine bilayers with 50 mM trans Cl^- , the P_o values were 0.62 ± 0.04 and 0.60 ± 0.05 ($P = \text{NS}$) without and with *trans* (C-PKA plus ATP), respectively. Thus, these control P_o values were similar to those reported in Table 1, with 50 mM trans Cl^- ; and in accord with the data in Fig. 7, adding (C-PKA plus ATP) to the *trans* solutions had no detectable effect on P_o when the *trans* solutions contained 50 mM Cl^- .

DISCUSSION

The experiments reported in this paper are consistent with the view that, in these basolaterally enriched renal medullary vesicles, *trans* (intracellular) addition of (C-PKA plus ATP) enhanced open-time probability when the *trans* solutions contained 2 mM KCl (Figs. 2–3), but had no effect on g_{Cl} (Fig. 4). This effect was specific for both ATP and for undenatured C-PKA (Fig. 5). Under the conditions used in our experiments, channel activation occurred when (C-PKA plus ATP) were added to *trans* but not to *cis* solutions (Fig. 7). We recognize in this regard that, in the experiments reported in Fig. 6, the *cis* KCl concentration of 270 mM was in excess of 170

mm, which is the *cis* KCl required for a half-maximal reduction in P_o , while the *trans* KCl concentration of 2 mm was less than 10 mm, the *trans* KCl concentration required for a half-maximal reduction in P_o . Accordingly, the present experiments do not exclude the possibility that, at lower *cis* KCl concentrations, (C-PKA plus ATP) addition to *cis* (extracellular) faces of these channels might affect channel activity.

The present results also show, in accord with our earlier findings [15, 23], that increasing the *trans* KCl concentration increased P_o appreciably. This effect was associated with a significant increase in single-channel conductance and with a perceptible change in the voltage-independent determinants of channel activity (Fig. 1). As noted in Fig. 1, however, increasing the *trans* KCl concentration from 2 to 50 mm had no effect on channel-gating charge.

The activation of open-time probability by *trans* (C-PKA plus ATP) addition was, in many respects, analogous to that observed by raising *trans* KCl concentration. Thus, the magnitude of the increase in P_o at the different holding voltages tested was quite similar either with *trans* (C-PKA plus ATP) addition or by raising *trans* KCl concentrations (Tables 1 and 2). Likewise, *trans* (C-PKA plus ATP) addition produced approximately the same magnitude change in ΔG , without effect on Z , as did raising *trans* KCl concentrations from 2 to 50 mm (Figs. 1 and 3). However, in contrast to the increase in single-channel conductance, which occurred when *trans* KCl concentrations were increased, *trans* (C-PKA plus ATP) addition did not affect g_{Cl} while increasing P_o (Fig. 4). This latter result is comparable to the effects of PKA on apical Cl^- channel activity in other epithelia [5, 11, 20, 21].

Clearly, the experiments reported in this paper provide no explicit information about the locus of Cl^- channel phosphorylation by *trans* (C-PKA plus ATP) addition. However, given the quantitative similarities between *trans* addition of (C-PKA plus ATP) and increases in *trans* KCl concentrations on P_o (Figs. 1 and 3; Tables 1 and 2), it is plausible to speculate that *trans* (C-PKA plus ATP) addition might modulate Cl^- channel activity at or near the *trans* Cl^- -sensitive site which affects ΔG but not Z ([23]; Fig. 1). Evidently, added data are required to evaluate this possibility.

The present data may have some pertinence to interpreting the ADH-dependent increase in g_{Cl}^b which occurs in intact mTALH segments [13, 18]. Specifically, g_{Cl}^b might be modulated by at least two processes. Clearly, an increase in intracellular Cl^- activity referable to increased apical NaCl admittance [6, 13] might, as noted previously [15], increase time-averaged Cl^- channel conductance by

increasing P_o (see Fig. 1). The data presented in this paper (Fig. 3) are also consistent with the view that, when intracellular Cl^- is reduced—for example, with luminal furosemide [18]—cAMP-dependent PKA might increase time-averaged Cl^- channel conductance directly. But the significance of this latter effect on the magnitude of g_{Cl}^b in intact mTALH segments [13, 18] may diminish appreciably at higher intracellular Cl^- activities ([4, 13, 18]; Figs. 3 and 7).

Finally, as noted in our prior publications about these channels [15, 23], the basolaterally enriched medullary vesicles used to fuse Cl^- channels into bilayer membranes are not homogenous. Hence added experimental data will be required to verify the origin of these channels as from basolateral membranes of mTALH segments.

We acknowledge the able technical assistance of Steven D. Chasteen. Clementine M. Whitman provided her customary excellent secretarial assistance. This work was supported by a grant from the National Institutes of Health (5-R01-DK 25540). W.B. Reeves is a Squibb-American Heart Association Clinician-Scientist. C.J. Winters is a Veterans Administration Associate Investigator.

References

1. Bayliss, J.M., Reeves, W.B., Andreoli, T.E. 1990. Cl^- transport in basolateral renal medullary vesicles: I. Cl^- transport in intact vesicles. *J. Membrane Biol.* **113**:49–56
2. Burnham, C., Karlsh, S.J.D., Jorgensen, P.L. 1985. Identification and reconstitution of a $\text{Na}^+/\text{K}^+/\text{Cl}^-$ cotransporter and K^+ channel from luminal membranes of renal red outer medulla. *Biochim. Biophys. Acta* **821**:461–469
3. Geck, P., Pfeiffer, B. 1985. $\text{Na}^+/\text{K}^+/\text{Cl}^-$ cotransport in animal cells—its role in volume regulation. *Ann. NY Acad. Sci.* **456**:166–182
4. Greger, R., Oberleithner, H., Schlatter, E., Cassola, A.C., Weidtke, C. 1983. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. *Pfluegers Arch.* **399**:29–34
5. Halm, D.R., Reckemmer, G.R., Schoumacher, R.A., Frizzell, R.A. 1988. Apical membrane chloride channels in a colonic cell line activated by secretory agonists. *Am. J. Physiol.* **254**:C505–C511
6. Hebert, S.C., Andreoli, T.E. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. Determinants of the ADH-mediated increases in transepithelial voltage and in net Cl^- absorption. *J. Membrane Biol.* **80**:221–233
7. Hebert, S.C., Culpepper, R.M., Andreoli, T.E. 1981. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl co-transport. *Am. J. Physiol.* **241**:F412–F431
8. Hebert, S.C., Culpepper, R.M., Andreoli, T.E. 1981. NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl co-transport; origin of transepithelial voltage. *Am. J. Physiol.* **241**:F432–F442
9. Hebert, S.C., Friedman, P.A., Andreoli, T.E. 1984. Effects of antidiuretic hormone on cellular conductive pathways in

mouse medullary thick ascending limbs of Henle: I. ADH increases transcellular conductance pathways. *J. Membrane Biol.* **80**:201–219

10. Kinne, R., Kinne-Saffran, E., Scholermann, B., Schultz, H. 1986. The anion specificity of the sodium-potassium-chloride cotransporter in rabbit kidney outer medulla: Studies on medullary plasma membranes. *Pfluegers Arch.* **407**:S168–S173
11. Li, M., McCann, J.D., Liedtke, C.M., Nairn, A.C., Greengard, P., Welsh, M.J. 1988. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. *Nature* **331**:358–360
12. Mandel, K.G., Dharmasathaphorn, K., McRoberts, J.A. 1986. Characterization of a cyclic-AMP-activated potassium transport in a human colonic epithelial cell line. *J. Biol. Chem.* **261**:704–712
13. Molony, D.A., Reeves, W.B., Hebert, S.C., Andreoli, T.E. 1987. ADH increases apical $\text{Na}^+, \text{K}^+, 2\text{Cl}^-$ entry in mouse medullary thick ascending limbs of Henle. *Am. J. Physiol.* **252**:F177–F187
14. Paulais, M., Teulon, J. 1990. cAMP-activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney. *J. Membrane Biol.* **113**:253–260
15. Reeves, W.B., Andreoli, T.E. 1990. Cl^- transport in basolateral renal medullary vesicles: II. Cl^- channels in planar lipid bilayers. *J. Membrane Biol.* **113**:57–65
16. Reeves, W.B., McDonald, G.A., Mehta, P., Andreoli, T.E. 1989. Activation of K^+ channels in renal medullary vesicles by cAMP-dependent protein kinase. *J. Membrane Biol.* **109**:65–72
17. Reimann, E.M., Beham, R.A. 1983. Catalytic subunit of cAMP-dependent protein kinase. *Methods Enzymol.* **99**:51–55
18. Schlatter, E., Greger, R. 1985. cAMP increases the basolateral Cl^- conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse. *Pfluegers Arch.* **405**:367–376
19. Schlender, K.K., Reiman, E.R. 1977. Glycogen synthase kinases. *J. Biol. Chem.* **252**:2384–2389
20. Schoumacher, R.A., Shoemaker, R.L., Halm, D.R., Tallant, E.A., Wallace, R.W., Frizzell, R.A. 1987. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. *Nature* **330**:752–754
21. Valdivia, H.H., Dubinsky, W.P., Coronado, R. 1988. Reconstitution and phosphorylation of chloride channels from airway epithelium membranes. *Science* **242**:1441–1444
22. Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990. cAMP-dependent protein kinase (PKA) and Cl^- independently activate intracellular faces of Cl^- channels in basolateral medullary vesicles. *J. Am. Soc. Nephrol.* **1**:695
23. Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990. Cl^- channels in basolateral renal medullary membranes. III. Determinants of single-channel activity. *J. Membrane Biol.* **118**:269–278
24. Wittner, M., deStefano, A., Wangemann, P., Nitschke, R., Greger, R., Bailly, C., Amiel, C., Roinel, N., deRouffignac, C. 1988. Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron. *Pfluegers Arch.* **412**:516–523

Received 13 November 1990; revised 23 January 1991